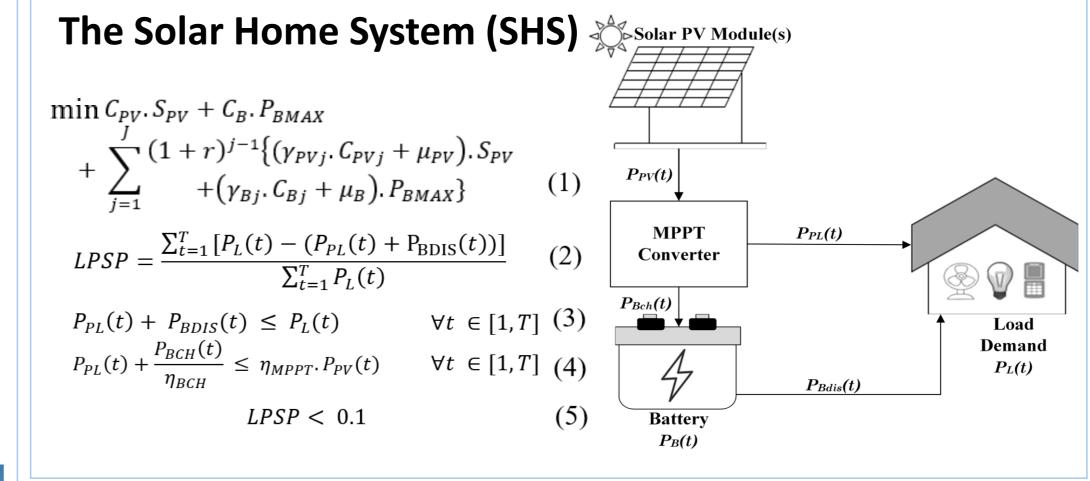
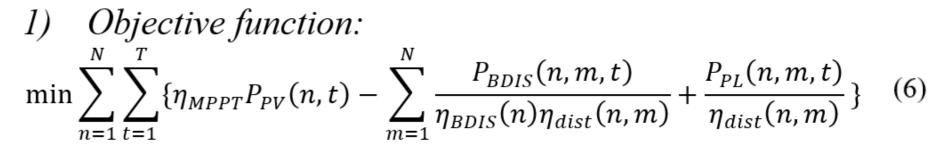
A Not-for-Profit University

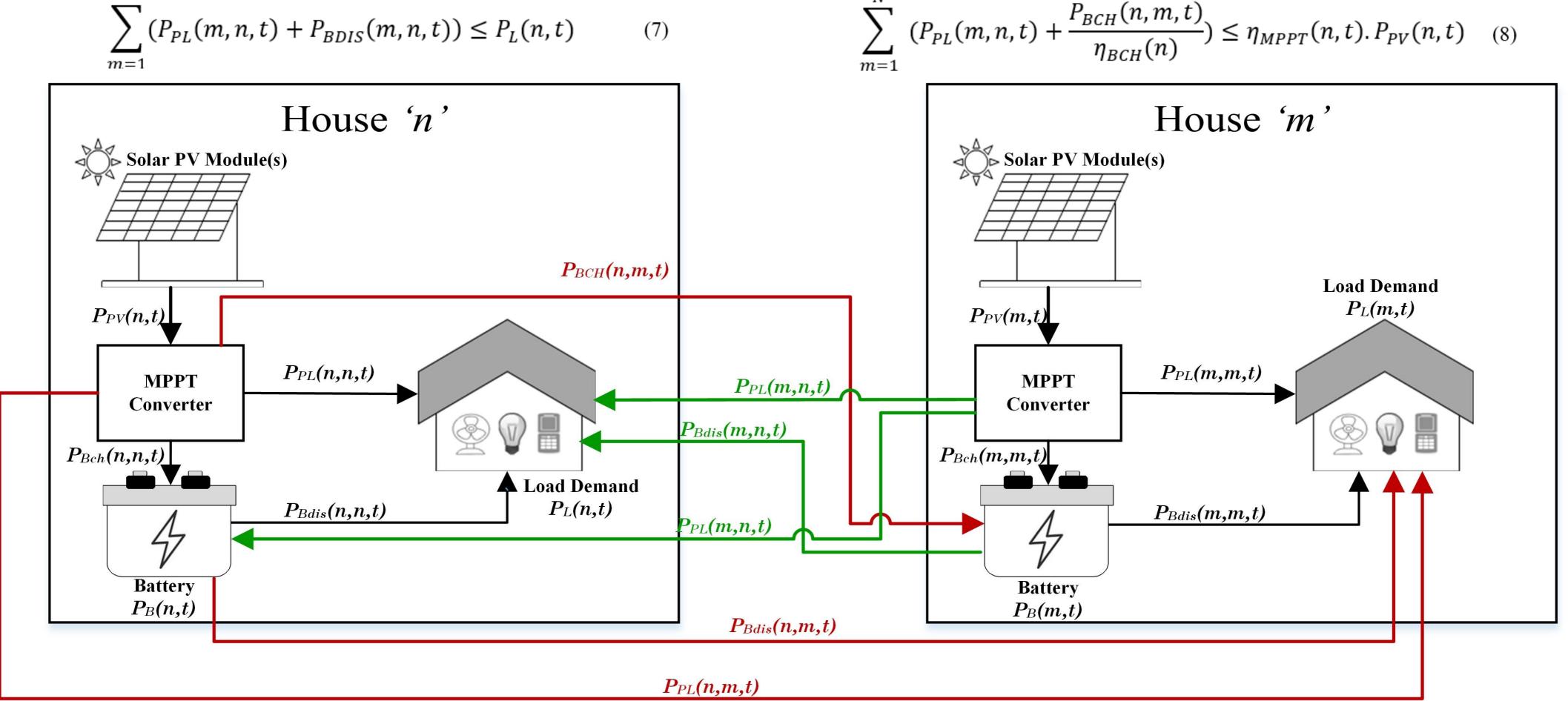
Gender sensitive climate change adaptation enabled through prosumer power sharing in off-grid scenarios

Reesha Arshad, Ph.D. Student at the Energy and Power Systems (EPS) Cluster Department of Electrical Engineering, LUMS Supervisor: Dr. Hassan A. Khan


How Climate Change Affects Women

- 80% of people displaced by climate change are women.
- Women are not equipped to deal with these impacts due to a lack of assets, financial resources and limited access to information.
- Improved electricity access can enhance climate change adaptation for remote communities.
- Interconnected Solar Home Systems (SHSs) with power sharing can improve access to energy services.
- This can lead to better adaptation opportunities for women.





The Proposed Solution: Decentralized Prosumer Microgrids

$$\sum_{m=1}^{N} (P_{PL}(m,n,t) + \frac{P_{BCH}(n,m,t)}{\eta_{BCH}(n)}) \le \eta_{MPPT}(n,t) \cdot P_{PV}(n,t) \quad (8)$$

Services Enabled through Improved *Energy Access*

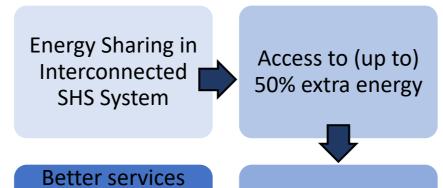
Energy Access for households is defined according to ESMAP's Multi-tier Framework (MTF 2015) [2].

INDICATIVE CALCULATION OF CONSUMPTION FOR MTF TIERS 1-5							
Appliance/	Power (W)	Hours/day	Baseline Annual Usage (kWh)				
Service			Tier 1	Tier 2	Tier 3	Tier 4	Tier 5
Task lighting	1/2	4-8	1.5	2.9	2.9	5.8	5.8
Mobile Phone charger	2	2-4	1.5	2.9	2.9	2.9	2.9
Radio device	2 or 4	2-4	1.5	5.8	5.8	5.8	5.8
General lighting	12	4-12		17.5	17.5	35.0	52.5
Fan	20 or 40	4,6,12,18		29.2	87.6	175.2	262.8
TV	20 or 40	2		14.6	29.2	29.2	29.2
Food processor	200	1/2			36.5	36.5	36.5
Washing machine	500	1			182.5	182.5	182.5
Refrigerator	300	6				657.0	657.0
Iron	1,100	1/3				120.5	120.5
Air conditioner	1,500	3					1,642.5
Total (kWh)			4.5	73	365	1,250	3,000

Sharing

• Excess power sharing potential of a four-house interconnected SHS system is studied.

Results: The Benefits of Power


• Stochastic load profiles [1] are used for each tier.

Tier	Before Power Sharing	After Power Sharing	Increase (%)			
Energy used per household (Wh/da						
1	45	67.5	50.0			
2	196.2	295.2	50.5			
3	882.9	1197.9	35.7			
	LCOE (cents/ kWh)					
1	32.75	21.11	-35.5			
2	23.17	17.35	-25.1			
3	26.96	16.57	-38.5			

In Summary: What access to extra energy means to women?

- SHSs are widespread but waste more than 50% of the generated energy.
- Interconnected SHS with four houses enables up to 50% more energy utilization, at up to 38.5% lower energy costs.

•	Households can use this additional energy for appliances, not
	previously accessible to SHS owners.
•	This provides climate resilience and adaptation opportunities for
	women [3].

enable more

climate change

opportunities for

women

Energy enables additional services Symposium (GTSNZ) 2023, Dubai, UAE.

References

DC 2015. [3] R. Arshad, H.A. Khan and R. Khalid, "Prosumer Power Sharing and Climate Change Adaptation in a Gendered Context" Presented at IEEE GreenTech, Sustainability, and **Net Zero Policies & Practices**

For more info: www.locelh2.org

Redefined ESMAP Technical Report; 008/15," WORLD BANK, Washington

[1] Narayan, Nishant (2018): Electrical power consumption load profiles

for households with DC appliances related to Multi-tier framework for

household electricity access. Version 1. 4TU.ResearchData. dataset.

[2] M. Bhatia and N. Angelou, "Beyond Connections: Energy Access